STRUCTURES AND PHASE TRANSITIONS IN (K_{1-x}Rb_x)₂SeO₄

H. Shigematsu^{1*}, Y. Akishige¹, T. Matsui², T. Tojo³, H. Kawaji³ and T. Atake³

¹Department of Physics, Faculty of Education, Shimane University, Matsue 690-8504, Japan

²Eco Topia Science Institute and Department of Materials, Physics and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

³Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

The phase diagram of the mixed crystal $(K_{1-x}Rb_x)_2SeO_4$ was determined by means of thermal analysis and neutron scattering experiments. The hexagonal to orthorhombic phase transition line exists for any *x*. The normal-incommensurate phase transition temperature decreases continuously with increasing Rb content. However, the incommensurate–commensurate phase transition was not observed except for K_2SeO_4 . According to the clear softening of the $\Sigma_2-\Sigma_3$ phonon branches and the finite frequency at 0 K for x>0.34, an existence of the hypothetical phase transition was confirmed.

Keywords: DSC, heat capacity, K₂SeO₄, neutron scattering, Rb₂SeO₄, structural phase transition

Introduction

Rb₂SeO₄ and K₂SeO₄ belong to a family of A_2BX_4 -type (X=Br, Cl and O) crystals with the β -K₂SO₄-type structure. As temperature decreases, Rb₂SeO₄ transforms from a high-temperature hexagonal phase I (space group $P6_3/mmc$) to an orthorhombic phase II (space group *Pnam*) at T_{I-II} =821 K [1]. No phase transition exists at lower temperatures and the melting point is observed at $T_{\rm m}$ =1233 K. On the other hand, in K₂SeO₄ three phase transitions and melting occur at temperatures of $T_{I-II}=745$ K, $T_i = 127.7$ K, $T_{\rm C}$ =95.1 K and $T_{\rm m}$ =~1270 K [2, 3]. The four phases are summarized as follows: phase I (T>T_{I-II}, space group $P6_3/mmc$), phase II ($T_{I-II} > T > T_i$, Pnam, Z=4, a_0 , b_0, c_0), phase III ($T_i > T > T_C$, incommensurate, $\sim 3a_0, b_0$, c_0) and phase IV ($T_C > T$, $Pna2_1$, Z=12, $3a_0$, b_0 , c_0), where a_0 , b_0 and c_0 are unit cell parameters of phase II. Among a lot of A₂BX₄-type crystals, a typical soft phonon mode was clearly observed in K₂SeO₄ both above and below the normal-incommensurate (N-INC) phase transition point, T_i , by neutron scattering [4, 5]. That is to say, the transition in K_2 SeO₄ is interpreted as displacive type one. On the other hand, since the soft mode above N-INC transition point in Rb₂ZnBr₄, Rb₂ZnCl₄, and K₂ZnCl₄, was not observed, it was thought that their transition type was order-disorder one. For many A2BO4-type crystals such as K₂SO₄, K₂CrO₄, Rb₂SeO₄ and Cs₂SeO₄, the N-INC transition has never been reported. However, in the case of K₂CrO₄, and Rb₂SeO₄, the calculated dispersion curves contain an unstable Σ_2 phonon branch [6], whose qualitative and quantitative features are similar

to those obtained for the prototype incommensurate material K_2SeO_4 . Furthermore, the calculated hypothetical transitions for many A_2BO_4 -type crystals are shown in [6]. Indeed, a softening tendency of the Σ_2 phonon branch was observed in Rb_2SeO_4 [1].

In order to get further information about the successive phase transitions in A_2BX_4 -type crystals, especially to determine the phase diagram and to investigate the existence of the hypothetical phase transition, we have performed heat capacity and neutron scattering experiments in $(K_{1-x}Rb_x)_2SeO_4$.

Experimental

Single crystals of $(K_{1-x}Rb_x)_2$ SeO₄ (x=0, 0.12, 0.23, 0.34, 0.42, 0.54, 0.62, 0.72, 0.82, 0.90 and 1.00) were grown by a slow evaporation method from a saturated aqueous solution containing the salts K₂SeO₄ and Rb₂SeO₄ in different molar ratios at 310 K. About four months were needed to grow large single crystals. The obtained crystals were colorless and transparent. Samples were annealed in air 400 K for five hours before an experiment to avoid an influence of water contamination. K and Rb content were determined using inductively coupled plasma atomic emission spectrometry. As a results of phase analysis by X-ray diffraction, it was confirmed that all samples of the general formula $(K_{1-x}Rb_x)_2SeO_4$ have a single phase with the orthorhombic (space group Pnam) symmetry at room temperature.

A heat capacity measurement was carried out using a Quantum Design PPMS heat capacity measure-

^{*} Author for correspondence: shige@edu.shimane-u.ac.jp

ment module in the temperature range from 2 to 200 K. The single-crystal specimens were used and the mass was from 2 to 5 mg. Above 200 K differential scanning calorimetry (DSC) measurements were carried out using a Seiko DSC220 at a heating rate of 10 K min⁻¹. The phase transition point was determined from the temperature at which the DSC curve began to change. For $(K_{1-x}Rb_x)_2SeO_4$ (x=0.12, 0.34 and 0.54), neutron scattering experiments were performed by use of the triple-axis spectrometers (4G, T1-1 and C1-1) at JRR-3M reactor of the Japan Atomic Energy Research Institute. In the 4G spectrometer, a fixed incident neutron beam of $k_i=2.5790$ Å⁻¹ was used for measuring high-energy excitation and high-angle reflections. A PG filter and the beam collimation 40'-40'-40' were employed. On the other hand, the T1-1 and C1-1 spectrometers were used for requiring a high energy resolution. The used conditions were following: PG filter, k_i =2.555 Å⁻¹ and open-40'-40' collimation for T1-1, and Be filter, $k_i=1.544$ Å⁻¹ and 80'-80'-80'-80' collimation for C1-1. In all spectrometers, a crystal with a size greater than 5.0 cm³ was mounted in an aluminum can filled with pure helium gas and set in a closed-cycle refrigerator which was cooled by cryogenics in the temperature range 8 to 300 K. The data collections were carried out in the (a^*, c^*) scattering plane and the measurements of phonon dispersion were performed along the line 002-202 for C1-1 and the line 004–204 for 4G and T1-1.

Results and discussion

Figure 1 shows the measured molar heat capacity. Anomalies due to the phase transitions were observed at 128 and 95 K for K₂SeO₄, at 101 K for $(K_{0.88}Rb_{0.12})_2SeO_4$ and at ~75 K for $(K_{0.77}Rb_{0.23})_2SeO_4$. The N-INC transition temperature decreases continuously with increasing Rb content. On the other hand, phase transition was not observed at $T_{\rm C}$ except for K₂SeO₄. The excess heat capacities due to the transition were estimated by subtracting the normal portion of the heat capacity [2]. In K₂SeO₄, the heat-capacity anomaly due to the phase III-to-IV transition is very sharp and very small. Furthermore, it sits on the tail of the heat-capacity anomaly due to the N-INC phase transition. Therefore, the excess heat capacity due to the two transitions was estimated with no distinction. In K₂SeO₄, our experimental values are in fair agreement with the already reported results [2], and the total entropy of transitions ΔS and the total enthalpy ΔH are estimated to be 1.01 J mol⁻¹K⁻¹ and 0.116 kJ mol⁻¹, respectively. For (K_{0.88}Rb_{0.12})₂SeO₄, we obtained $\Delta S=0.68 \text{ J mol}^{-1} \text{ K}^{-1}$ and $\Delta H=0.063 \text{ kJ mol}^{-1}$.

Fig. 1 Measured molar heat capacity of (K_{1-x}Rb_x)₂SeO₄. Anomalous peaks are indicated by arrows

For $(K_{0.77}Rb_{0.23})_2SeO_4$, it was difficult to estimate the entropy and the enthalpy because the anomalous peak was very broad.

DSC signals are shown as a function of temperature in Fig. 2. All anomalies due to the phase I (space group $P6_3/mmc$)-phase II (*Pnam*) transition are observed in the temperature range of 740 to 830 K. At x<0.54, the transition temperature T_{I-II} and the magnitude of the anomalous peaks are almost equivalent. On the other hand, at x>0.54, the peak intensities and the phase transition at T_{I-II} increase continuously with increasing Rb content.

The acoustic branch makes anticrossing with the optical branch, and the optical (lowest Σ_2 -S₃ phonon) branch becomes soft with decreasing temperature. Figure 3 shows the phonon dispersion curves of the lowest Σ_2 - Σ_3 phonons along the ($\xi \ 0 \ 0$) line below room temperature. An important result of the lattice dynamics calculations is that in A₂BO₄-type crystals the unstable phonon branch is either optical or acoustic, but anticrossed with an optical branch [6, 7]. Indeed, in the case of K₂SeO₄, the clear softening of the Σ_2 branch originates in the anticrossing of the acoustic branch with an optical one; the unstable branch is the prolongation of the lowest Σ_2 - Σ_3 optical

Fig. 2 Temperature dependence of the DSC signals on heating

branch in essence [4, 5]. Furthermore, we show that the behavior of the lowest $\Sigma_2 - \Sigma_3$ optical branch for $(K_{1-x}Rb_x)_2$ SeO₄ (x=0.12, 0.34, 0.54) is similar to those for K₂SeO₄ as the results of our study. Incidentally, the mode softening or the anticrossing has not been observed in non-oxide A₂BX₄-type crystals [8–10]. In a case of K₂SeO₄, the prolongation of the acoustic branch has its minimum around $0.7a^*$ and the crystal transforms into an incommensurate phase at $T_i=127.7$ K [3]. With increasing Rb content, the modulation wave number at T_i decreases. In $(K_{1-x}Rb_x)_2SeO_4$ (x=0.12, 0.23 and 0.34), N-INC phase transitions were observed at 101 K (x=0.12, $q\sim(5/18)a^*$), at 75 K $(x=0.23, q\sim(4/17)a^*)$ and at 8 K $(x=0.34, q\sim(1/6)a^*)$. The diffraction profiles are shown in Fig. 4. Thermal analysis and structure analysis showed no phase transition in $(K_{1-x}Rb_x)_2$ SeO₄ (x>0.34) and they retain the orthorhombic structure (space group Pnam) down to 2 K. The obtained phase diagram is summarized in Fig. 5.

It is clear that the Σ_2 - Σ_3 phonon branch softens in the vicinity of ξ =1 in (K_{0.46}Rb_{0.54})₂SeO₄ with decreasing temperature. The square of the soft frequency at ξ =1 vs. temperature shows a linear dependence. Though the frequency remains finite at 0 K, the extrapolation will give the hypothetical transition temperature at the cross point with the temperature

Fig. 3 Phonon dispersion curves in an extended-zone scheme on the ($\xi \ 0 \ 0$) for $(K_{1-x}Rb_x)_2SeO_4$ (*x*=0, 0.12, 0.34 and 0.54). The data for *x*=0 show the phonon dispersion curves in [4]. The minimum positions of the Σ_2 branch are indicated by arrows

Fig. 4 The typical diffraction profiles for $(K_{1-x}Rb_x)_2SeO_4$ (x=0.12, 0.23 and 0.34). The profiles of 8 or 13 K are the lowest temperature measured. The intensity at h=1 and ~2.05 are caused from multiple scattering and sample-holder aluminum 111 reflection, respectively

Fig. 5 Phase diagram of (K_{1-x}Rb_x)₂SeO₄

axis. The estimated hypothetical temperature is -16 ± 5 K, which is lower than the calculated hypothetical temperature, -7 K, for Rb₂SeO₄ [6]. Thus the existence of the hypothetical phase transition is supported by our experiments.

Acknowledgements

The present work was partly supported by the collaborative research project of Materials and Structures Laboratory, Tokyo Institute of Technology, and by a Grant-in-Aid for Scientific Research No. 14340094 from the Japan Society for Promotion of Science.

References

- H. Shigematsu, Y. Akishige, H. Mashiyama, T. Tojo, H. Kawaji, T. Atake and T. Matsui, J. Korean Phys. Soc., 46 (2005) 235.
- 2 T. Atake, K. Nomoto and B. K. Chaudhuri, J. Chem. Thermodyn., 15 (1983) 383.
- 3 B. N. Mehrotra, Neues Jahrb Mineral. Monatsh., 1977 (1977) 398.
- 4 M. Iizumi, J. D. Axe, G. Shirane and K. Shimaoka, Phys. Rev., B15 (1977) 4392.
- 5 J. D. Axe, M. Iizumi and G. Shirame, Phys. Rev., B22 (1980) 3408.
- 6 I. Etxebarria, M. Quilichini, J. M. Perez-Mato and G. Madariaga, Phys. Rev., B46 (1992) 2764.
- 7 I. Etxebarria, J. M. Perez-Mato and A. Crio, Phys. Rev., B42 (1990) 8482.
- 8 H. Shigematsu, H. Mashiyama, M. Takesada, K. Ohshima, Y. Oohara and T. Matsui, J. Phys. Soc. Jpn., 69 (2000) 2905.
- 9 H. Mashiyama, H. Shigematsu, K. Sugimoto, H. Kawano, Y. Oohara and H. Yoshizawa, J. Korean Phys. Soc. (Proc. Suppl.), 27 (1994) S98.
- 10 M. Quilichini, V. Dvorak and P. Boutrouille, J. Phys. I. France, 1 (1991) 1321.

DOI: 10.1007/s10973-005-7080-2